ISSN 1600-5368

Poly[diethylenetriammonium [aquadi- μ_2 sulfato-sulfatolanthanum(III)]]

Yuan-Rui Wang, Yong-Sheng Hu, Cui-Li Shi, Dan-Ping Li and Ya-Feng Li*

School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China Correspondence e-mail: fly012345@sohu.com

Received 2 June 2009; accepted 11 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.021; wR factor = 0.049; data-to-parameter ratio = 15.2.

In the title compound, $\{(C_4H_{16}N_3)[La(SO_4)_3(H_2O)]\}_n$, the La atom adopts an irregular LaO₉ coordination geometry, including one bonded water molecule. The three sulfate groups adopt both monodentate and bidentate coordination to the metal ions. Two of the sulfate groups serve as bridges in the (100) and (010) directions, yielding infinite sheets, whereas the third is pendant to one La³⁺ cation. The protonated organic species interacts with the layers by way of N-H···O hydrogen bonds, and O-H···O hydrogen bonds involving aqua ligands also occur.

Related literature

For related lanthanide sulfate structures, see: Bataille & Louër (2004); Dan et al. (2004); Liu et al. (2005); Rao et al. (2006); Wickleder (2002); Xing et al. (2003).

Experimental

Crystal data

(C₄H₁₆N₃)[La(SO₄)₃(H₂O)] $M_r = 551.33$ Monoclinic, P21 a = 6.7128 (13) Åb = 10.442 (2) Å c = 11.103 (2) Å $\beta = 93.94(3)^{\circ}$

V = 776.4 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 3.23 \text{ mm}^{-1}$ T = 293 K $0.45\,\times\,0.31\,\times\,0.06$ mm Data collection

```
Rigaku R-AXIS RAPID
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.317, \ \tilde{T}_{\max} = 0.830
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ H atoms treated by a mixture of $wR(F^2) = 0.049$ independent and constrained S = 1.17refinement $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$ 3429 reflections $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$ 225 parameters 4 restraints Absolute structure: Flack (1983), 1552 Friedel pairs

Table 1 Selected bond lengths (Å).

La1 - O1W	2.445 (3)	La1-O8 ⁱ	2.577 (3)
La1-O1	2.474 (3)	La1-O3	2.580 (3)
La1-O7	2.475 (2)	La1-O9 ⁱⁱ	2.583 (3)
La1—O5 ⁱ	2.510 (3)	La1-O2 ⁱⁱ	2.615 (3)
La1-O6	2.542 (3)		

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z$.

Table 2

Hydrogen-bond geometry (Å, °).

1 (19) 1.98 (2)	2 775 (5)	
) 2.775 (5)	157 (4)
0 (18) 2.17 (4)) 2.872 (5)	140 (4)
2.02	2.762 (5)	141
2.04	2.900 (5)	161
2.07	2.874 (5)	150
1.96	2.798 (5)	155
2.18	3.015 (5)	154
2.28	2.981 (5)	134
2.18	2.809 (5)	127
2.25	3.051 (5)	150
1.95	2.834 (5)	174
2.08	2.784 (5)	135
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z$; (iii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iv) $x, y + 1, z; (v) - x + 1, y + \frac{1}{2}, -z + 1; (vi) - x + 2, y + \frac{1}{2}, -z + 1; (vii) x + 1, y + 1, z.$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

The Project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (20071108).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2997).

 $R_{\rm int} = 0.028$

7574 measured reflections

3429 independent reflections

3312 reflections with $I > 2\sigma(I)$

Flack parameter: -0.098 (11)

References

Bataille, T. & Louër, D. (2004). J. Solid State Chem. **177**, 1235–1243. Brandenburg, K. (2000). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Dan, M., Behera, J. N. & Rao, C. N. R. (2004). J. Mater. Chem. **14**, 1257–1265. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, L., Meng, H., Li, G., Cui, Y., Wang, X. & Pang, W. (2005). J. Solid State Chem. 178, 1003–1007. Rao, C. N. R., Behera, J. N. & Dan, M. (2006). *Chem. Soc. Rev.* 35, 375–387.

Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC, The Woodlands, Texas,

USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2087.

Xing, Y., Shi, Z., Li, G. & Pang, W. (2003). Dalton Trans. pp. 940-943.

supplementary materials

Acta Cryst. (2009). E65, m789-m790 [doi:10.1107/S1600536809022272]

Poly[diethylenetriammonium [aquadi- μ_2 -sulfato-sulfatolanthanum(III)]]

Y.-R. Wang, Y.-S. Hu, C.-L. Shi, D.-P. Li and Y.-F. Li

Comment

Recently, a remarkable plenty of organically templated open-framework rare-earth metal sulfates have been obtained due to sulfate which gives the possibility of high framework dimensionalities and lanthanide with the high coordinated numbers (from 7-fold to 12-fold) according to larger ion diameters of rare-earth elements and in the sequel the complicated topologies (Wickleder, 2002; Rao, *et al.*, 2006). As SO₄ group is able to adopt monodentate (S—O—Ln of -140°) and bidentate (S—O—Ln of -100°) to coordinate the lanthanide elements, the lanthanide sulfates are increasingly expanded with regard to the framework structures. Associated with reported two-dimensional lanthanide sulfates - $[C_2N_2H_{10}]$ ·[Nd₂(SO₄)₄](Dan, *et al.*, 2004), $[C_2N_2H_{10}]$ ·[Nd₂(H₂O)₄·(SO₄)₄]·2H₂O (Xing, *et al.*, 2003), $[C_6H_{14}N_2]_2$ ·[La₂(H₂O)₄·(SO₄)₅]·5H₂O (Bataille, *et al.*, 2004), $[C_2N_2H_{10}]$ ·[Nd₂(H₂O)₂(SO₄)₆]·4H₂O (Liu, *et al.*, 2005) and $[C_6N_2H_{14}]$ ·[C₂N₂H₁₀]·SO₄· [La₂(H₂O)₂·(SO₄)₆]·4H₂O (Dan, *et al.*, 2004), (I) keeps the distinct structure in which bridged μ_2 -SO₄ afford one monodentate and one bidentate and grafted SO₄ give the bidentate to the La cations.

The asymmetric unit of (I) comprises of twenty-four non-hydrogen atoms, 17 of which belong to the inorganic framework, including one La cation, three SO₄ groups, one coordination water and one the organic template (four carbon atoms and three nitrogen atoms), as shown in Fig. 1. The two-dimensional layer of (I) is constructed from LaO₉ and SO₄ polyhedra. Three crystallographic independent S atoms, which are tetrahedrally coordinated by four O atoms with the S—O distances 1.458 (12) Å to 1.508 (4) Å, can be divided into two modes: S(1) and S(3) consist of three S—O—La linkages and links two La atoms through one bidentate and one monodentate; S(2) makes two S—O—La linkages as a ligand of one La atom through bidentate. The O—S—O angles are within the expected range for tetrahedral geometry. La ion is 9-coordinated by one monodentate and bidentate of μ_2 -S(1)O₄ and μ_2 -S(3)O₄, bidentate of S(2)O₄ and one water molecule. The bond distances of La—O vary from 2.445 (4) to 2.617 (25) Å, whereas the angles of O—La—O are between 54.18 (10)° and 149.13 (10)°, which were found in other reported La compounds (Dan, *et al.*, 2004). The bond angles of S—O—La of bidentate coordination range from 99.27 (13)° to 101.15 (16)°, and the S—O—La of monodentate coordination is at 143.04 (13)° and 144.35 (19)°.

As shown in Fig.2, the layer of (I) is accomplished by connect the La by μ_2 -S(1)O₄ along (100) direction and μ_2 -S(3)O₄ along (010) direction. The S(2)O₄ do not take part in the formation of layer and graft to the La ions by the bidentate coordination. The protonated H₃DETA interact with the layer by the H-bond of N—H···O, which intergrate the Ow—H···O to hold toger the adjacent layer to the supermolecular network (Fig.3).

Experimental

 $La(NO_3)_3$ 6H₂O (0.30 g, 0.7 mmol) was dissolved in 5 ml deionized water under stirring, and then H₂SO₄ (95%, 0.25 ml, 4.55 mmol) and DETA (0.33 ml, 4 mmol) were added drop-wise to a clear solution with pH = 4.0. After being continuously

stirred for 3 h, the solution with the molar ratio of $La(NO_3)_3$ 6H₂O: 6.5H₂SO₄: 4.3DETA: 397H₂O was transferred into a 23-ml autoclave and heated at 438 K for 5 days. After cooling to room temperature, colorless rods of (I) were collected by filtration as a single phase (yield 53% based on the La). The atomic ratio of La:S determined by EDX was 1:3, in consistence with the results of structural determination of (I).

Refinement

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.84 (2) Å, H···H = 1.37 (2) Å and $U_{iso}(H) = 1.2U_{eq}(O)$. The remaining H-atoms were placed in calculated positions (C—H = 0.89 Å, N—H = 0.89–0.90 Å) and were included in the refinement as riding with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. The asymmetric unit of (I), expanded to show the complete metal coordination and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1/2 + y, -z.]

Fig. 2. A stick plot of (I), displaying the layer paralleling *ab* planar formed by link the La with μ_2 -S(1)O₄ and μ_2 -S(3)O₄.

Fig. 3. The ball-stick packing diagram of (I), viewed along (100) direction. The H-bond of N—H···O and OW—H···O hold together adjacent layer.

$Poly[diethylenetriammonium\ [aquadi-\mu_2-sulfato-sulfatolanthanum(III)]]$

Crystal data $(C_4H_{16}N_3)[La(SO_4)_3(H_2O)]$ $M_r = 551.33$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.7128 (13) Å b = 10.442 (2) Åc = 11.103 (2) Å

 $F_{000} = 544$ $D_{\rm x} = 2.358 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2000 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 3.23 \text{ mm}^{-1}$ T = 293 K

 $\beta = 93.94 (3)^{\circ}$ $V = 776.4 (3) \text{ Å}^3$ Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer	3429 independent reflections
Radiation source: fine-focus sealed tube	3312 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -8 \rightarrow 7$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 13$
$T_{\min} = 0.317, \ T_{\max} = 0.830$	$l = -14 \rightarrow 14$
7574 measured reflections	

Rod, colourless

 $0.45 \times 0.31 \times 0.06 \text{ mm}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^2(F_o^2) + (0.0089P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.049$	$(\Delta/\sigma)_{\rm max} = 0.006$
<i>S</i> = 1.17	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
3429 reflections	$\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$
225 parameters	Extinction correction: none
4 restraints	Absolute structure: Flack (1983), 1552 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.098 (11)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	z	$U_{\rm iso}*/U_{\rm eq}$
La1	0.53138 (2)	0.36394 (2)	0.180431 (16)	0.00943 (6)
S1	-0.00721 (14)	0.31013 (9)	0.24266 (10)	0.0156 (2)
S2	0.42405 (15)	0.58541 (9)	0.36244 (10)	0.0176 (2)
S3	0.42773 (14)	0.02938 (9)	0.06143 (10)	0.0167 (2)
01	0.4541 (4)	0.1705 (3)	0.0573 (3)	0.0236 (7)
02	0.6123 (4)	-0.0363 (3)	0.0235 (3)	0.0234 (7)
03	0.4904 (4)	0.4531 (3)	0.3940 (3)	0.0241 (7)
O4	0.3862 (5)	-0.0119 (3)	0.1833 (3)	0.0287 (7)
O5	-0.1328 (4)	0.4210 (3)	0.2793 (3)	0.0226 (6)
O6	0.4374 (4)	0.5935 (3)	0.2274 (3)	0.0220 (7)
07	0.1623 (3)	0.3571 (4)	0.1758 (2)	0.0233 (6)
08	-0.1464 (4)	0.2337 (3)	0.1610 (3)	0.0217 (7)
09	0.2667 (4)	-0.0115 (3)	-0.0290 (3)	0.0226 (7)
O10	0.0654 (5)	0.2351 (3)	0.3473 (3)	0.0333 (8)
011	0.5666 (5)	0.6790 (3)	0.4210 (3)	0.0285 (7)
012	0.2219 (4)	0.6107 (3)	0.3958 (3)	0.0320 (8)
O1W	0.5151 (5)	0.1920 (3)	0.3288 (3)	0.0242 (7)
H1F	0.478 (6)	0.119 (3)	0.303 (4)	0.029*
H1G	0.554 (7)	0.188 (4)	0.403 (2)	0.029*
N1	1.0903 (5)	0.6434 (3)	0.0681 (4)	0.0267 (8)
H1A	1.1667	0.6620	0.0081	0.032*
H1B	0.9960	0.5881	0.0422	0.032*
H1C	1.1651	0.6089	0.1290	0.032*
N2	0.7510 (5)	0.8376 (3)	0.2587 (4)	0.0270 (10)
H2A	0.6714	0.8687	0.1970	0.032*
H2B	0.6714	0.8081	0.3145	0.032*
N3	1.0998 (5)	1.0100 (3)	0.4815 (4)	0.0265 (9)
H3A	1.1893	0.9822	0.5384	0.032*
H3B	0.9983	1.0464	0.5159	0.032*
H3C	1.1567	1.0671	0.4352	0.032*
C1	0.9941 (7)	0.7643 (4)	0.1105 (5)	0.0280 (10)
H1D	0.9115	0.8028	0.0451	0.034*
H1E	1.0952	0.8257	0.1387	0.034*
C2	0.8674 (6)	0.7262 (4)	0.2127 (4)	0.0221 (9)
H2C	0.7749	0.6595	0.1847	0.027*
H2D	0.9532	0.6915	0.2786	0.027*
C3	0.8728 (7)	0.9459 (4)	0.3132 (5)	0.0293 (11)
H3D	0.9384	0.9900	0.2500	0.035*
H3E	0.7849	1.0066	0.3492	0.035*
C4	1.0257 (7)	0.9011 (4)	0.4067 (5)	0.0339 (12)
H4A	0.9679	0.8373	0.4573	0.041*
H4B	1.1359	0.8618	0.3682	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
La1	0.00845 (8)	0.00909 (8)	0.01059 (9)	-0.00017 (11)	-0.00037 (6)	-0.00017 (12)
S1	0.0125 (4)	0.0176 (4)	0.0165 (5)	-0.0001 (4)	-0.0004 (4)	0.0015 (4)
S2	0.0180 (5)	0.0177 (5)	0.0169 (5)	-0.0002 (4)	0.0002 (4)	-0.0024 (4)
S3	0.0182 (5)	0.0156 (4)	0.0161 (5)	-0.0013 (4)	0.0002 (4)	-0.0022 (4)
01	0.0310 (17)	0.0163 (14)	0.0238 (18)	-0.0007 (13)	0.0034 (14)	-0.0025 (12)
O2	0.0223 (16)	0.0224 (14)	0.0253 (18)	0.0088 (12)	0.0006 (13)	-0.0037 (13)
O3	0.0279 (17)	0.0219 (14)	0.0226 (18)	0.0050 (13)	0.0023 (14)	0.0011 (13)
O4	0.0431 (19)	0.0273 (16)	0.0161 (18)	-0.0080 (15)	0.0038 (14)	-0.0004 (13)
O5	0.0148 (14)	0.0283 (14)	0.0247 (17)	0.0027 (13)	0.0012 (13)	-0.0069 (13)
O6	0.0255 (16)	0.0225 (14)	0.0175 (17)	0.0009 (13)	-0.0028 (13)	-0.0019 (12)
07	0.0146 (11)	0.0317 (14)	0.0243 (14)	0.0013 (18)	0.0053 (10)	0.010 (2)
08	0.0191 (14)	0.0188 (14)	0.0268 (18)	-0.0017 (12)	-0.0004 (13)	-0.0053 (12)
09	0.0210 (15)	0.0258 (15)	0.0204 (18)	0.0016 (13)	-0.0035 (12)	-0.0051 (13)
O10	0.0318 (18)	0.0370 (18)	0.030 (2)	0.0032 (16)	-0.0058 (15)	0.0145 (15)
011	0.0305 (17)	0.0313 (16)	0.0228 (18)	-0.0111 (14)	-0.0037 (14)	-0.0056 (14)
012	0.0224 (15)	0.0356 (17)	0.039 (2)	0.0066 (14)	0.0108 (15)	-0.0046 (16)
O1W	0.0368 (17)	0.0208 (15)	0.0153 (17)	-0.0009 (15)	0.0034 (14)	0.0021 (13)
N1	0.0235 (19)	0.033 (2)	0.024 (2)	-0.0013 (17)	0.0031 (16)	0.0009 (17)
N2	0.0222 (16)	0.027 (3)	0.031 (2)	0.0017 (15)	-0.0033 (15)	-0.0011 (16)
N3	0.030 (2)	0.0243 (18)	0.024 (2)	-0.0041 (17)	-0.0034 (17)	0.0005 (16)
C1	0.028 (2)	0.026 (2)	0.030 (3)	-0.0006 (19)	0.000 (2)	0.004 (2)
C2	0.023 (2)	0.020 (2)	0.024 (2)	0.0011 (17)	0.0016 (18)	0.0003 (18)
C3	0.035 (3)	0.0159 (19)	0.036 (3)	-0.0007 (19)	-0.008 (2)	-0.0034 (19)
C4	0.050 (3)	0.022 (2)	0.028 (3)	0.007 (2)	-0.011 (2)	-0.0010 (18)
Geometric param	neters (Å, °)					

Atomic displacement parameters $(Å^2)$

La1—012.474 (3)N1—H1A0.8900La1—072.475 (2)N1—H1B0.8900La1—05 ⁱ 2.510 (3)N1—H1C0.8900La1—062.542 (3)N2—C31.498 (5)La1—08 ⁱ 2.577 (3)N2—C21.510 (5)La1—032.580 (3)N2—H2A0.9000La1—09 ⁱⁱ 2.583 (3)N2—H2B0.9000La1—09 ⁱⁱ 2.615 (3)N3—C41.474 (5)S1—0101.457 (3)N3—H3A0.8900S1—071.484 (3)N3—H3B0.8900S1—051.504 (3)C1—C21.517 (6)S2—0121.455 (3)C1—H1D0.9700S2—031.486 (3)C2—H2C0.9700S2—061.511 (3)C2—H2D0.9700	La1—O1W	2.445 (3)	N1—C1	1.508 (6)
La1-O72.475 (2)N1-H1B0.8900La1-O5 ⁱ 2.510 (3)N1-H1C0.8900La1-O62.542 (3)N2-C31.498 (5)La1-O8 ⁱ 2.577 (3)N2-C21.510 (5)La1-O32.580 (3)N2-H2A0.9000La1-O9 ⁱⁱ 2.583 (3)N2-H2B0.9000La1-O9 ⁱⁱ 2.615 (3)N3-C41.474 (5)S1-O101.457 (3)N3-H3A0.8900S1-O71.484 (3)N3-H3B0.8900S1-O51.504 (3)C1-C21.517 (6)S2-O121.455 (3)C1-H1D0.9700S2-O31.486 (3)C2-H2C0.9700S2-O61.511 (3)C2-H2D0.9700	La1—O1	2.474 (3)	N1—H1A	0.8900
La1-O5i2.510 (3)N1-H1C0.8900La1-O62.542 (3)N2-C31.498 (5)La1-O8i2.577 (3)N2-C21.510 (5)La1-O32.580 (3)N2-H2A0.9000La1-O9 ⁱⁱ 2.583 (3)N2-H2B0.9000La1-O2 ⁱⁱ 2.615 (3)N3-C41.474 (5)S1-O101.457 (3)N3-H3A0.8900S1-O71.484 (3)N3-H3B0.8900S1-O51.504 (3)C1-C21.517 (6)S2-O121.455 (3)C1-H1D0.9700S2-O31.486 (3)C2-H2C0.9700S2-O61.511 (3)C2-H2D0.9700	La1—O7	2.475 (2)	N1—H1B	0.8900
La1062.542 (3)N2C31.498 (5)La108i2.577 (3)N2C21.510 (5)La1032.580 (3)N2H2A0.9000La109ii2.583 (3)N2H2B0.9000La102ii2.615 (3)N3C41.474 (5)S10101.457 (3)N3H3A0.8900S1071.484 (3)N3H3B0.8900S1081.488 (3)N3H3C0.8900S1051.504 (3)C1C21.517 (6)S20121.455 (3)C1H1D0.9700S2031.486 (3)C2H2C0.9700S2061.511 (3)C2H2D0.9700	La1—O5 ⁱ	2.510 (3)	N1—H1C	0.8900
La1- $O8^i$ 2.577 (3)N2- $C2$ 1.510 (5)La1- $O3$ 2.580 (3)N2- $H2A$ 0.9000La1- $O9^{ii}$ 2.583 (3)N2- $H2B$ 0.9000La1- $O2^{ii}$ 2.615 (3)N3- $C4$ 1.474 (5)S1- $O10$ 1.457 (3)N3- $H3A$ 0.8900S1- $O7$ 1.484 (3)N3- $H3B$ 0.8900S1- $O5$ 1.504 (3)C1- $C2$ 1.517 (6)S2- $O12$ 1.455 (3)C1- $H1D$ 0.9700S2- $O3$ 1.486 (3)C2- $H2C$ 0.9700S2- $O6$ 1.511 (3)C2- $H2D$ 0.9700	La1—O6	2.542 (3)	N2—C3	1.498 (5)
La1-O3 $2.580 (3)$ N2-H2A 0.9000 La1-O9 ⁱⁱ $2.583 (3)$ N2-H2B 0.9000 La1-O2 ⁱⁱ $2.615 (3)$ N3-C4 $1.474 (5)$ S1-O10 $1.457 (3)$ N3-H3A 0.8900 S1-O7 $1.484 (3)$ N3-H3B 0.8900 S1-O8 $1.488 (3)$ N3-H3C 0.8900 S1-O5 $1.504 (3)$ C1-C2 $1.517 (6)$ S2-O12 $1.455 (3)$ C1-H1D 0.9700 S2-O3 $1.486 (3)$ C2-H2C 0.9700 S2-O6 $1.511 (3)$ C2-H2D 0.9700	La1—O8 ⁱ	2.577 (3)	N2—C2	1.510 (5)
La1- -09^{ii} 2.583 (3)N2-H2B0.9000La1- -02^{ii} 2.615 (3)N3-C41.474 (5)S1- -010 1.457 (3)N3-H3A0.8900S1- -07 1.484 (3)N3-H3B0.8900S1- -08 1.488 (3)N3-H3C0.8900S1- -05 1.504 (3)C1-C21.517 (6)S2- -012 1.455 (3)C1-H1D0.9700S2- -03 1.486 (3)C2-H2C0.9700S2- -06 1.511 (3)C2-H2D0.9700	La1—O3	2.580 (3)	N2—H2A	0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	La1—O9 ⁱⁱ	2.583 (3)	N2—H2B	0.9000
S1—0101.457 (3)N3—H3A0.8900S1—071.484 (3)N3—H3B0.8900S1—081.488 (3)N3—H3C0.8900S1—051.504 (3)C1—C21.517 (6)S2—0121.455 (3)C1—H1D0.9700S2—031.486 (3)C2—H2C0.9700S2—061.511 (3)C2—H2D0.9700	La1—O2 ⁱⁱ	2.615 (3)	N3—C4	1.474 (5)
S1-O71.484 (3)N3-H3B0.8900S1-O81.488 (3)N3-H3C0.8900S1-O51.504 (3)C1-C21.517 (6)S2-O121.455 (3)C1-H1D0.9700S2-O111.486 (3)C1-H1E0.9700S2-O31.486 (3)C2-H2C0.9700S2-O61.511 (3)C2-H2D0.9700	S1—O10	1.457 (3)	N3—H3A	0.8900
S1-O81.488 (3)N3-H3C0.8900S1-O51.504 (3)C1-C21.517 (6)S2-O121.455 (3)C1-H1D0.9700S2-O111.486 (3)C1-H1E0.9700S2-O31.486 (3)C2-H2C0.9700S2-O61.511 (3)C2-H2D0.9700	S1—O7	1.484 (3)	N3—H3B	0.8900
S1-O51.504 (3)C1-C21.517 (6)S2-O121.455 (3)C1-H1D0.9700S2-O111.486 (3)C1-H1E0.9700S2-O31.486 (3)C2-H2C0.9700S2-O61.511 (3)C2-H2D0.9700	S1—O8	1.488 (3)	N3—H3C	0.8900
S2—0121.455 (3)C1—H1D0.9700S2—0111.486 (3)C1—H1E0.9700S2—031.486 (3)C2—H2C0.9700S2—061.511 (3)C2—H2D0.9700	S1—O5	1.504 (3)	C1—C2	1.517 (6)
S2—0111.486 (3)C1—H1E0.9700S2—031.486 (3)C2—H2C0.9700S2—061.511 (3)C2—H2D0.9700	S2—O12	1.455 (3)	C1—H1D	0.9700
S2-O31.486 (3)C2-H2C0.9700S2-O61.511 (3)C2-H2D0.9700	S2—O11	1.486 (3)	C1—H1E	0.9700
S2—O6 1.511 (3) C2—H2D 0.9700	S2—O3	1.486 (3)	C2—H2C	0.9700
	S2—O6	1.511 (3)	C2—H2D	0.9700

supplementary materials

S3—O4	1.465 (3)	C3—C4	1.485 (6)
S3—O1	1.485 (3)	C3—H3D	0.9700
S3—O9	1.486 (3)	С3—Н3Е	0.9700
S3—O2	1.501 (3)	C4—H4A	0.9700
O1W—H1F	0.841 (19)	C4—H4B	0.9700
O1W—H1G	0.850 (18)		
O1W—La1—O1	75.84 (11)	S3—O1—La1	144.5 (2)
01W—La1—07	84.36 (11)	S3—O2—La1 ⁱⁱⁱ	99.36 (14)
O1—La1—O7	78.07 (11)	S2—O3—La1	99.67 (16)
O1W—La1—O5 ⁱ	87.70 (11)	S1—O5—La1 ^{iv}	101.69 (14)
O1—La1—O5 ⁱ	125.67 (9)	S2—O6—La1	100.57 (14)
07—La1—O5 ⁱ	152.06 (10)	S1—O7—La1	143.12 (17)
O1W—La1—O6	122.10 (10)	S1—O8—La1 ^{iv}	99.29 (14)
O1—La1—O6	146.90 (10)	S3—O9—La1 ⁱⁱⁱ	101.23 (14)
O7—La1—O6	76.67 (11)	La1—O1W—H1F	117 (3)
O5 ⁱ —La1—O6	85.11 (9)	La1—O1W—H1G	132 (3)
O1W—La1—O8 ⁱ	75.26 (11)	H1F—O1W—H1G	110 (3)
O1—La1—O8 ⁱ	70.62 (9)	C1—N1—H1A	109.5
07—La1—08 ⁱ	145.87 (10)	C1—N1—H1B	109.5
O5 ⁱ —La1—O8 ⁱ	55.10 (9)	H1A—N1—H1B	109.5
O6—La1—O8 ⁱ	137.43 (9)	C1—N1—H1C	109.5
O1W—La1—O3	68.48 (10)	H1A—N1—H1C	109.5
O1—La1—O3	140.45 (10)	H1B—N1—H1C	109.5
O7—La1—O3	81.93 (10)	C3—N2—C2	115.9 (3)
O5 ⁱ —La1—O3	70.24 (10)	C3—N2—H2A	108.3
O6—La1—O3	55.07 (9)	C2—N2—H2A	108.3
O8 ⁱ —La1—O3	114.26 (10)	C3—N2—H2B	108.3
O1W—La1—O9 ⁱⁱ	149.15 (10)	C2—N2—H2B	108.3
O1—La1—O9 ⁱⁱ	98.68 (10)	H2A—N2—H2B	107.4
07—La1—O9 ⁱⁱ	124.77 (10)	C4—N3—H3A	109.5
O5 ⁱ —La1—O9 ⁱⁱ	70.70 (10)	C4—N3—H3B	109.5
06—La1—O9 ⁱⁱ	78.89 (10)	H3A—N3—H3B	109.5
O8 ⁱ —La1—O9 ⁱⁱ	74.33 (10)	C4—N3—H3C	109.5
O3—La1—O9 ⁱⁱ	120.71 (10)	H3A—N3—H3C	109.5
O1W—La1—O2 ⁱⁱ	147.69 (10)	H3B—N3—H3C	109.5
O1—La1—O2 ⁱⁱ	78.24 (10)	N1—C1—C2	106.8 (4)
O7—La1—O2 ⁱⁱ	71.61 (9)	N1—C1—H1D	110.4
O5 ⁱ —La1—O2 ⁱⁱ	123.41 (9)	C2—C1—H1D	110.4
O6—La1—O2 ⁱⁱ	73.73 (10)	N1—C1—H1E	110.4
O8 ⁱ —La1—O2 ⁱⁱ	113.54 (10)	C2—C1—H1E	110.4
O3—La1—O2 ⁱⁱ	126.54 (10)	H1D—C1—H1E	108.6
O9 ⁱⁱ —La1—O2 ⁱⁱ	54.16 (9)	N2—C2—C1	112.4 (3)
O10—S1—O7	110.52 (18)	N2—C2—H2C	109.1

O10—S1—O8	111.06 (19)	C1—C2—H2C	109.1
O7—S1—O8	110.06 (18)	N2—C2—H2D	109.1
O10—S1—O5	111.2 (2)	C1—C2—H2D	109.1
O7—S1—O5	110.1 (2)	H2C—C2—H2D	107.9
O8—S1—O5	103.72 (16)	C4—C3—N2	112.1 (3)
O12—S2—O11	110.7 (2)	C4—C3—H3D	109.2
O12—S2—O3	112.23 (19)	N2—C3—H3D	109.2
O11—S2—O3	109.55 (19)	С4—С3—Н3Е	109.2
O12—S2—O6	111.26 (19)	N2—C3—H3E	109.2
O11—S2—O6	108.49 (18)	H3D—C3—H3E	107.9
O3—S2—O6	104.40 (17)	N3—C4—C3	109.9 (4)
O4—S3—O1	110.57 (18)	N3—C4—H4A	109.7
O4—S3—O9	111.30 (18)	C3—C4—H4A	109.7
O1—S3—O9	110.28 (18)	N3—C4—H4B	109.7
O4—S3—O2	109.77 (19)	C3—C4—H4B	109.7
01—S3—O2	109.99 (18)	H4A—C4—H4B	108.2
O9—S3—O2	104.78 (17)		
O4—S3—O1—La1	20.4 (4)	O11—S2—O6—La1	121.73 (16)
O4—S3—O1—La1	20.4 (4)	O3—S2—O6—La1	4.98 (17)
09—S3—O1—La1	144.0 (3)	O1W—La1—O6—S2	11.55 (19)
O2—S3—O1—La1	-101.0 (3)	O1—La1—O6—S2	127.22 (17)
La1 ^{III} —S3—O1—La1	-159.2 (2)	O7—La1—O6—S2	86.02 (15)
O1W-La1-O1-S3	-4.8 (3)	05 ⁱ —La1—06—S2	-72.65 (15)
O7—La1—O1—S3	-91.9 (3)	08 ⁱ —La1—O6—S2	-92.26 (18)
O5 ⁱ —La1—O1—S3	71.8 (3)	O3—La1—O6—S2	-3.38 (12)
O6—La1—O1—S3	-132.8 (3)	O9 ⁱⁱ —La1—O6—S2	-143.91 (15)
O8 ⁱ —La1—O1—S3	74.3 (3)	O2 ⁱⁱ —La1—O6—S2	160.44 (16)
O3—La1—O1—S3	-30.7 (4)	S1 ⁱ —La1—O6—S2	-79.21 (14)
O9 ⁱⁱ —La1—O1—S3	144.2 (3)	S3 ⁱⁱ —La1—O6—S2	-170.95 (15)
O2 ⁱⁱ —La1—O1—S3	-165.3 (3)	O10—S1—O7—La1	-4.0 (4)
S1 ⁱ —La1—O1—S3	71.8 (3)	O8—S1—O7—La1	-127.0 (3)
S2—La1—O1—S3	-76.5 (4)	O5—S1—O7—La1	119.3 (4)
S3 ⁱⁱ —La1—O1—S3	169.9 (3)	La1 ^{iv} —S1—O7—La1	174.6 (2)
O4—S3—O2—La1 ⁱⁱⁱ	125.92 (15)	O1W—La1—O7—S1	16.6 (4)
O4—S3—O2—La1 ⁱⁱⁱ	125.92 (15)	01—La1—07—S1	93.2 (4)
O1—S3—O2—La1 ⁱⁱⁱ	-112.21 (16)	O5 ⁱ —La1—O7—S1	-57.7 (5)
O9—S3—O2—La1 ⁱⁱⁱ	6.31 (17)	O6—La1—O7—S1	-108.3 (4)
O12—S2—O3—La1	115.73 (19)	O8 ⁱ —La1—O7—S1	69.6 (4)
O11—S2—O3—La1	-120.90 (17)	O3—La1—O7—S1	-52.4 (4)
O11—S2—O3—La1	-120.90 (17)	O9 ⁱⁱ —La1—O7—S1	-174.4 (3)
O6—S2—O3—La1	-4.89 (17)	O2 ⁱⁱ —La1—O7—S1	174.7 (4)
O1W—La1—O3—S2	-163.00 (19)	S1 ⁱ —La1—O7—S1	15.3 (6)
O1—La1—O3—S2	-135.94 (15)	S2—La1—O7—S1	-79.7 (4)
O7—La1—O3—S2	-75.91 (16)	S3 ⁱⁱ —La1—O7—S1	-178.3 (4)

supplementary materials

O5 ⁱ —La1—O3—S2	101.50 (16)	O10—S1—O8—La1 ^{iv}	115.43 (17)
O6—La1—O3—S2	3.43 (12)	07—S1—O8—La1 ^{iv}	-121.86 (17)
O8 ⁱ —La1—O3—S2	135.54 (13)	O5—S1—O8—La1 ^{iv}	-4.05 (18)
O9 ⁱⁱ —La1—O3—S2	49.94 (18)	O4—S3—O9—La1 ⁱⁱⁱ	-125.00 (16)
O2 ⁱⁱ —La1—O3—S2	-16.0 (2)	O4—S3—O9—La1 ⁱⁱⁱ	-125.00 (16)
S1 ⁱ —La1—O3—S2	119.34 (14)	O1—S3—O9—La1 ⁱⁱⁱ	111.89 (16)
S3 ⁱⁱ —La1—O3—S2	18.23 (18)	O2—S3—O9—La1 ⁱⁱⁱ	-6.43 (18)
O1—S3—O4—O4	0.00 (18)	O12—S2—O11—O11	0.0 (3)
O9—S3—O4—O4	0.00 (10)	O3—S2—O11—O11	0.0 (3)
O2—S3—O4—O4	0.00 (13)	06—S2—O11—O11	0.0 (4)
La1 ⁱⁱⁱ —S3—O4—O4	0.00 (5)	La1—S2—O11—O11	0.0 (4)
O10—S1—O5—La1 ^{iv}	-115.22 (18)	C3—N2—C2—C1	-62.8 (5)
O7—S1—O5—La1 ^{iv}	121.94 (14)	N1—C1—C2—N2	-176.3 (3)
O8—S1—O5—La1 ^{iv}	4.19 (18)	C2—N2—C3—C4	-51.4 (6)
O12—S2—O6—La1	-116.29 (17)	N2—C3—C4—N3	-163.4 (4)
O11—S2—O6—La1	121.73 (16)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, *y*+1/2, -*z*; (iii) -*x*+1, *y*-1/2, -*z*; (iv) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1F…O4	0.841 (19)	1.98 (2)	2.775 (5)	157 (4)
O1W—H1G···O11 ^v	0.850 (18)	2.17 (4)	2.872 (5)	140 (4)
N1—H1A····O8 ⁱⁱ	0.89	2.02	2.762 (5)	141
N1—H1B···O9 ⁱⁱ	0.89	2.04	2.900 (5)	161
N1—H1C···O6 ⁱ	0.89	2.07	2.874 (5)	150
N2—H2B…O11	0.90	1.96	2.798 (5)	155
N2—H2A····O2 ^{vi}	0.90	2.18	3.015 (5)	154
N2—H2A····O4 ^{vi}	0.90	2.28	2.981 (5)	134
N3—H3A···O5 ^{vii}	0.89	2.18	2.809 (5)	127
N3—H3A···O3 ^{viii}	0.89	2.25	3.051 (5)	150
N3—H3B···O12 ^{vii}	0.89	1.95	2.834 (5)	174
N3—H3C···O10 ^{ix}	0.89	2.08	2.784 (5)	135

Symmetry codes: (v) -*x*+1, *y*-1/2, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*; (i) *x*+1, *y*, *z*; (vi) *x*, *y*+1, *z*; (vii) -*x*+1, *y*+1/2, -*z*+1; (viii) -*x*+2, *y*+1/2, -*z*+1; (ix) *x*+1, *y*+1, *z*.

Fig. 1

Fig. 2

